In order to promote public education and public safety, equal justice for all, a better informed citizenry, the rule of law, world trade and world peace, this legal document is hereby made available on a noncommercial basis, as it is the right of all humans to know and speak the laws that govern them.
EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM
EN 1993-1-7
April 2007
ICS 91.010.30; 91.080.10
Supersedes EN V 1993-1-7:1999
Incorporating corrigendum April 2009
English Version
Eurocode 3 - Calcul des structures en acier - Partie 1–7: Résistance et stabilité des structures en plaques planes chargées hors de leur plan | Eurocode 3 - Bemessung und Konstruktion von Stahlbauten - Teil 1–7: Plattenförmige Bauteile mit Querbelastung |
This European Standard was approved by CEN on 12 June 2006.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Management Centre: rue de Stassart, 36 B–1050 Brussels
© 2007 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.
Ref. No. EN 1993–1–7:2007: E
1Page | |||
Foreword | 3 | ||
1 | General | 4 | |
1.1 | Scope | 4 | |
1.2 | Normative references | 4 | |
1.3 | Terms and definitions | 5 | |
1.4 | Symbols | 6 | |
2 | Basis of design | 9 | |
2.1 | Requirements | 9 | |
2.2 | Principles of limit state design | 9 | |
2.3 | Actions | 9 | |
2.4 | Design assisted by testing | 10 | |
3 | Material properties | 10 | |
4 | Durability | 10 | |
5 | Structural analysis | 10 | |
5.1 | General | 10 | |
5.2 | Stress resultants in the plate | 10 | |
6 | Ultimate limit state | 15 | |
6.1 | General | 15 | |
6.2 | Plastic limit | 15 | |
6.3 | Cyclic plasticity | 16 | |
6.4 | Buckling resistance | 17 | |
7 | Fatigue | 18 | |
8 | Serviceability limit state | 18 | |
8.1 | General | 18 | |
8.2 | Out of plane deflection | 18 | |
8.3 | Excessive vibrations | 18 | |
Annex A [informative] – Types of analysis for the design of plated structures | 19 | ||
A.l | General | 19 | |
A.2 | Linear elastic plate analysis (LA) | 19 | |
A.3 | Geometrically nonlinear analysis (GNA) | 19 | |
A.4 | Materially nonlinear analysis (MNA) | 20 | |
A.5 | Geometrically and materially nonlinear analysis (GMNA) | 20 | |
A.6 | Geometrically nonlinear analysis elastic with imperfections included (GNIA) | 20 | |
A.7 | Geometrically and materially nonlinear analysis with imperfections included (GMNIA) | 20 | |
Annex B [informative] – Internal stresses of unstiffened rectangular plates from small deflection theory | 21 | ||
B.l | General | 21 | |
B.2 | Symbols | 21 | |
B.3 | Uniformly distributed loading | 21 | |
B.4 | Central patch loading | 24 | |
Annex C [informative] – Internal stresses of unstiffened rectangular plates from large deflection theory | 26 | ||
C.1 | General | 26 | |
C.2 | Symbols | 26 | |
C.3 | Uniformly distributed loading on the total surface of the place | 26 | |
C.4 | Central patch loading | 32 |
This European Standard EN 1993-1-7, Eurocode 3: Design of steel structures: Part 1–7 Plated structures subject to out of plane loading, has been prepared by Technical Committee CEN/TC250 « Structural Eurocodes », the Secretariat of which is held by BSI. CEN/TC250 is responsible for all Structural Eurocodes.
This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by October 2007, and conflicting National Standards shall be withdrawn at latest by March 2010.
This Eurocode supersedes ENV 1993-1-7.
According to the CEN-CENELEC Internal Regulations, the National Standard Organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
This standard gives alternative procedures, values and recommendations with notes indicating where national choices may have to be made. The National Standard implementing EN 1993-1-7 should have a National Annex containing all Nationally Determined Parameters to be used for the design of steel structures to be constructed in the relevant country.
National choice is allowed in EN 1993-1-7 through:
EN 1993 | Eurocode 3: | Design of steel structures: |
Part 1.1: | General rules and rules for buildings | |
Part 1.3: | Cold-formed members and sheeting | |
Part 1.4: | Stainless steels | |
Part 1.5: | Plated structural elements 4 | |
Part 1.6: | Strength and stability of shell structures | |
Part 1.8 : | Design of joints | |
Part 1.9: | Fatigue strength of steel structures | |
Part 1.10: | Selection of steel for fracture toughness and through-thickness properties | |
Part 1.12: | Additional rules for the extension of EN 1993 up to steel grades S700 | |
Part 4.1: | Silos | |
Part 4.2: | Tanks |
A structure that is built up from nominally flat plates which are joined together. The plates may be stiffened or unstiffened, see Figure 1.1.
Figure 1.1 : Components of a plated structure
A plate segment is a flat plate which may be unstiffened or stiffened. A plate segment should be regarded as an individual part of a plated structure.
A plate or a section attached to the plate with the purpose of preventing buckling of the plate or reinforcing it against local loads. A stiffener is denoted:
Plate with transverse and/or longitudinal stiffeners.
Unstiffened plate surrounded by stiffeners or, on a web, by flanges and/or stiffeners or, on a flange, by webs and/or stiffeners.
A failure mode at the ultimate limit state where the structure loses its ability to resist increased loading due to the development of a plastic mechanism.
A failure mode in the ultimate limit state where failure of the plate occurs due to tension.
Where repeated yielding is caused by cycles of loading and unloading.
Where the structure looses its stability under compression and/or shear.
Where cyclic loading causes cracking or failure.
The load applied normal to the middle surface of a plate segment.
Forces applied parallel to the surface of the plate segment. They are induced by in-plane effects (for example temperature and friction effects) or by global loads applied at the plated structure.
σmx | is the membrane normal stress in the x-direction due to membrane normal stress resultant per unit width nx; |
σmy | is the membrane normal stress in the y-direction due to membrane normal stress resultant per unit width ny; |
τmxy | is the membrane shear stress due to membrane shear stress resultant per unit width nxy. |
Figure 1.2: Membrane stresses
σbx | is the stress in the x-direction due to bending moment per unit width mx; |
σby | is the stress in the y-direction due to bending moment per unit width my; |
τbxy | is the shear stress due to the twisting moment per unit width mxy; |
τbxz | is the shear stress due to transverse shear forces per unit width qx associated with bending; |
τbyz | is the shear stress due to transverse shear forces qy associated with bending. |
Figure 1.3: Normal and shear stresses due to bending
NOTE: In general, there are eight stress resultants in a plate at any point. The shear stresses τbxzand τbyz due to qx and qy are in most practical cases insignificant compared to the other components of stress, and therefore they may normally be disregarded for the design.
α | aspect ratio of a plate segment (a/b); |
ε | strain; |
αR | load amplification factor; |
ρ | reduction factor for plate buckling; |
σi | Normal stress in the direction i, see Figure 1.2 and Figure 1.3;7 |
τ | Shear stress, see Figure l .2 and Figure l .3; |
v | Poisson’s ratio; |
γM | partial factor. |
E | Modulus of elasticity |
a | length of a plate segment, see Figure 1.4 and Figure 1.5; |
b | width of a plate segment, see Figure 1.4 and Figure 1.5; |
fyk | yield stress or 0,2% proof stress for material with non linear stress-strain curve; |
ni | membrane normal force in the direction i [kN/m]; |
nxy | membrane shear force [kN/m] |
m | bending moment [kNm/m]; |
qz | transverse shear force in the z direction [kN/m]; |
t | thickness of a plate segment, see figure 1.4 and 1.5. |
NOTE: Symbols and notations which are not listed above are explained in the text where they first appear.
Figure 1.4: Dimensions and axes of unstiffened plate segments
Figure 1.5: Dimensions and axes of stiffened plate segments; stiffeners may be open or closed stiffeners
Type of analysis | Bending theory | Material law | Plate geometry |
Linear elastic plate analysis (LA) | linear | linear | perfect |
Geometrically non-linear elastic analysis (GNA) | non-linear | linear | perfect |
Materially non-linear analysis (MNA) | linear | non-linear | perfect |
Geometrically and materially non-linear analysis (GMNA) | non-linear | non-linear | perfect |
Geometrically non-linear elastic analysis with imperfections (GNIA) | non-linear | linear | imperfect |
Geometrically and materially non-linear analysis with imperfections (GMNIA) | non-linear | non-linear | imperfect |
NOTE 1: A definition of the different types of analysis is given in Annex A.
NOTE 2: The type of analysis appropriate to a structure should be stated in the project specification.
NOTE 3: The use of a model with perfect geometry implies that geometrical imperfections are either not relevant or included through other design provisions.
NOTE 4: Amplitudes for geometrical imperfections for imperfect geometries are chosen such that in comparisons with results from tests using test specimens fabricated with tolerances according to EN 1090-2 the calculative results are reliable, therefore these amplitudes in general differ from the tolerances given in EN 1090-2.
NOTE: Annex B and Annex C provide tabulated values for rectangular unstiffened plates which are loaded transversely. For circular plates design formulas are given in EN 1993-1-6. Further design formulas may be used, if the reliability of the design formulas is in accordance with the requirements given in EN 1991-1.
where
and nx,Ed, ny,Ed, nxy,Ed, my,Ed and mxy,Ed are defined in 1.4(1) and (2).
NOTE: The above expressions give a simplified conservative equivalent stress for design
where σx,Ed and σy,Ed are positive in case of tension.
where
ρ | is the reduction factor for plate buckling as defined in 4.4 of EN 1993-1-5; |
a,b | are geometric properties of the plate, see Figure 5.1; |
t | is the thickness of the plate; |
α | is the aspect ratio |
is the relative slenderness of the plate, see EN 1993-1-5. |
Figure 5.1: Initial equivalent geometric bow imperfection e0 of a plate segment
where
AL,eff | is the effective area of the stiffener considering to local plate buckling of the stiffener; |
ρc | is the reduction factor due to global plate buckling of the stiffened plate segment, as defined in 4.5.4(1) of EN 1993-1-5; |
ρpan,i | is the reduction factor due to local plate buckling of the snbpanel i, as defined in 4.4(1) of EN 1993-1-5; |
bpan,i | is the width of the subpanel i, as defined in 4.5.1(3) of EN 1993-1-5; |
tpan,i | is the thickness of the subpanel i; |
β | is the effective width factor for the effect of shear lag, see 3.2.1 of EN 1993-1-5; |
k | is the ratio defined in 3.3 of EN 1993-1-5. |
Figure 5.2: Definition of the cross-section Ai
σeq,Ed ≤ σeq,Rd (6.1)
where σeq,Ed is the largest value of Von Mises equivalent stress as defined in 5.2.3.
σeq,Rd = fyk / γM0 (6.2)
NOTE: For the numerical value of γM0 see 1.1 (2).
FEd ≤ FRd (6.3)
where FRd = αR FEd
15αR | is the load amplification factor for the loads FEd for reaching the ultimate limit state. |
ΔσEd ≤ ΔσRd (6.4)
where ΔσEd is the largest value of the Von Mises equivalent stress range
at the relevant point of the plate segment due to the relevant combination of design actions.
ΔσRd = 2,0fyk/γM0 (6.5)
NOTE: For the numerical value of γM0 see 1.1 (2).
εeq,Ed = m Δεeq,Ed (6.6)
where:
m | is the number of cycles in the design life; |
Δεeq,Ed | is the largest increment in the Von Mises plastic strain during one complete load cycle at any point in the structure occurring after the third cycle. |
NOTE 1: The National Annex may choose the value of neq. The value neq = 25 is recommended.
NOTE 2: For the numerical value of γM0 see 1.1 (2)
FEd ≤ FRd (6.8)
FRd = k Frk/γm1 (6.9)
where
FRk | is the characteristic buckling resistance of the plated structure |
k | is the calibration factor, see (6). |
NOTE: For the numerical value of γM1 see 1.1(2).
k = FRk.known.check / FRk.check (6.10)
17where
FRk.known.check | as follows from prior knowledge; |
FRk.check | are the results of the numerical calculations. |
NOTE For limiting values of out of plane deflection w see application standard.
NOTE: For limiting values of slenderness to prevent excessive vibrations see application standard.
[informative]
where
where f is the Airy’s stress function
[informative]
qEd | is the design value of the distributed load; |
ρEd | is the design value of the patch loading; |
a | is the smaller side of the plate; |
b | is the longer side of the plate; |
t | is the thickness of the plate; |
E | is the Elastic modulus; |
kw | is the coefficient for the deflection of the plate appropriate to the boundary conditions of the plate specified in the data tables; |
kσbx | is the coefficient for the bending stress σbx of the plate appropriate to the boundary conditions of the plate specified in the data tables; |
kσby | is the coefficient for the bending stress σby of the plate appropriate to the boundary conditions of the plate specified in the data tables. |
NOTE: Expression (B.1) is only valid where w is small compared with t.
NOTE: The points for which the state of stress are defined in the data tables are located either on the centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, the bending shear stresses τb are zero.
Loading: Uniformly distributed loading |
||||
Boundary Conditions: All edges are rigidly supported and rotationally free |
||||
b/a | kw 1 | kσbx 1 | kσby 1 | |
1,0 | 0,04434 | 0,286 | 0,286 | |
1,5 | 0,08438 | 0,486 | 0,299 | |
2,0 | 0,11070 | 0,609 | 0,278 | |
3,0 | 0,13420 | 0,712 | 0,244 |
Loading: Uniformly distributed loading |
|||||
Boundary Conditions: All edges are rigidly supported and rotationally fixed |
|||||
b/a | kw 1 | kσbx 1 | kσby 1 | kσbx 2 | |
1,0 | 0,01375 | 0,1360 | 0.1360 | −0,308 | |
1,5 | 0,02393 | 0,2180 | 0,1210 | −0,454 | |
2,0 | 0,02763 | 0,2450 | 0,0945 | −0,498 | |
3,0 | 0,02870 | 0,2480 | 0,0754 | −0,505 |
Loading: Uniformly distributed loading |
|||||
Boundary Conditions: Three edges are rigidly supported and rotationally free and one edge is rigidly supported and rotationally fixed. |
|||||
b/a | kw 1 | kσbx 1 | kσby 1 | kσbx 4 | |
1,5 | 0,04894 | 0,330 | 0,177 | −0,639 | |
2,0 | 0,05650 | 0,368 | 0,146 | −0,705 |
Loading: Uniformly distributed loading |
|||||
Boundary Conditions: Two edges are rigidly supported and rotationally free and two edges are rigidly supported and rotationally fixed. |
|||||
b/a | kw 1 | kσbx 1 | kσby 1 | kσbx 4 | |
1,0 | 0,02449 | 0,185 | 0,185 | −0,375 | |
1,.5 | 0,04411 | 0,302 | 0,180 | −0,588 | |
2,0 | 0,05421 | 0,355 | 0,152 | −0,683 |
Loading: Uniformly distributed loading |
|||||
Boundary Conditions: Two opposite short edges are clamped, the other two edges are simply supported. |
|||||
b/a | kw 1 | kσbx 1 | kσby 1 | kσby 3 | |
1,0 | 0,02089 | 0,145 | 0,197 | −0,420 | |
1,5 | 0,05803 | 0,348 | 0,274 | −0,630 | |
2,0 | 0,09222 | 0,519 | 0,284 | −0,717 |
Loading: Uniformly distributed loading |
|||||
Boundary Conditions: Two opposite long edges are clamped, the other two edges are simply supported. |
|||||
b/a | kw 1 | kσbx 1 | kσby 1 | kσbx 2 | |
1,5 | 0,02706 | 0,240 | 0,106 | −0,495 | |
2,0 | 0,02852 | 0,250 | 0,0848 | −0,507 |
Loading: Central patch loading |
|||||
Boundary Conditions: All edges are rigidly supported and rotationally free |
|||||
Parameters: α = u/a β = v/a |
|||||
b/a | α × β | kw 1 | kσbx 1 | kσby 1 | |
1 | 0,1 × 0,l | 0,1254 | 1,72 | 1,72 | |
0,2 × 0,2 | 0,1210 | 1,.32 | 1,32 | ||
0,3 × 0,3 | 0,1126 | 1,04 | 1,04 | ||
0,2 × 0,3 | 0,1167 | 1,20 | 1,12 | ||
0,2 × 0,4 | 0,1117 | 1,10 | 0,978 | ||
1,5 | 0,1 × 0,l | 0,1664 | 1,92 | 1,70 | |
0,2 × 0,2 | 0,1616 | 1,51 | 1,29 | ||
0,3 × 0,3 | 0,1528 | 1,22 | 1,01 | ||
0,2 × 0,3 | 0,1577 | 1,39 | 1,09 | ||
0,2 × 0,4 | 0,1532 | 1,29 | 0,953 | ||
2,0 | 0,1 × 0,l | 0,1795 | 1,97 | 1,67 | |
0,2 × 0,2 | 0,1746 | 1,56 | 1,26 | ||
0,3 × 0,3 | 0,1657 | 1,28 | 0,985 | ||
0,2 × 0,3 | 0,1708 | 1,45 | 1,07 | ||
0,2 × 0,4 | 0,1665 | 1,35 | 0,929 | ||
3,0 | 0,1 × 0,l | 0,1840 | 1,99 | 1,66 | |
0,2 × 0,2 | 0,1791 | 1,58 | 1,25 | ||
0,3 × 0,3 | 0,1701 | 1,30 | 0,975 | ||
0,2 × 0,3 | 0,1753 | 1,47 | 1,06 | ||
0,2 × 0,4 | 0,1711 | 1,37 | 0,918 |
[informative]
qEd | is the design value of the load uniformly distributed over the total surface; |
ρEd | is the design value of the patch loading uniformly distributed over the surface u × v; |
a | is the smaller side of the plate; |
b | is the longer side of the plate; |
t | is the thickness of the plate; |
E | is the Elastic modulus; |
FBC | flexural boundary conditions; |
MBC | membrane boundary conditions; |
kw | is the coefficient for the deflection of the plate appropriate to the boundary conditions specified in the data tables; |
kσbx | is the coefficient for the bending stress σbx of the plate appropriate to the boundary conditions specified in of the plate in the data tables; |
kσby | is the coefficient for the bending stress σby of the plate appropriate to the boundary conditions specified in the data tables; |
kσmx | is the coefficient for the membrane stress σmx of the plate appropriate to the boundary conditions specified in the data tables; |
kσmy | is the coefficient for the membrane stress σmy of the plate appropriate to the boundary conditions specified in the data tables. |
σx,Ed = − σbx,Ed + σmx,Ed (C.6)
σy,Ed = − σby,Ed + σmy,Ed (C.7)
σx,Ed = σbx,Ed + σmx,Ed (C.8)
σy,Ed = σby,Ed + σmy,Ed (C.9)
NOTE: The points for which the state of stress are defined in the data tables are located either on the centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, membrane shearing stresses τm as well as bending shear stresses τb are zero. The algebraic sum of the appropriate bending and membrane stresses at the points considered in the data tables gives the values of maximum and minimum surface stresses at these points.
Loading: Uniformly distributed loading |
|||||||
Boundary conditions: FBC: All edges are simply supported. MBC: Zero direct stresses, zero shear stresses |
|||||||
Parameters: |
|||||||
b/a | Q | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 | kσmy 2 |
1,0 | 20 | 0,0396 | 0,2431 | 0,2431 | 0,0302 | 0,0302 | −0,0589 |
40 | 0,0334 | 0,1893 | 0,1893 | 0,0403 | 0,0403 | −0,0841 | |
120 | 0,0214 | 0,0961 | 0,0961 | 0,0411 | 0,0411 | −0,1024 | |
200 | 0,0166 | 0,0658 | 0,0658 | 0,0372 | 0,0372 | −0,1004 | |
300 | 0,0135 | 0,0480 | 0,0480 | 0,0335 | 0,0335 | −0,0958 | |
400 | 0,0116 | 0,0383 | 0,0383 | 0,0306 | 0,0306 | −0,0915 | |
1,5 | 20 | 0,0685 | 0,3713 | 0,2156 | 0,0243 | 0,0694 | −0,1244 |
40 | 0,0546 | 0,2770 | 0,1546 | 0,0238 | 0,0822 | −0,1492 | |
120 | 0,0332 | 0,1448 | 0,0807 | 0,0170 | 0,0789 | −0,1468 | |
200 | 0,0257 | 0,1001 | 0,0583 | 0,0141 | 0,0715 | −0,1363 | |
300 | 0,0207 | 0,0724 | 0,0440 | 0,0126 | 0,0646 | −0,1271 | |
400 | 0,0176 | 0,0569 | 0,0359 | 0,0117 | 0,0595 | −0,1205 | |
2,0 | 20 | 0,0921 | 0,4909 | 0,2166 | 0.0085 | 0,0801 | −0,1346 |
40 | 0,0746 | 0,3837 | 0,1687 | 0,0079 | 0,0984 | −0,1657 | |
120 | 0,0462 | 0,2138 | 0,0959 | 0,0073 | 0,0992 | −0,1707 | |
200 | 0,0356 | 0,1516 | 0,0695 | 0,0067 | 0,0914 | −0,1610 | |
300 | 0,0287 | 0,1121 | 0,0528 | 0,0061 | 0,0840 | −0,1510 | |
400 | 0,0245 | 0,0883 | 0,0428 | 0,0061 | 0,0781 | −0,1434 |
Loading: Uniformly distributed loading: |
||||||||
Boundary conditions: FBC: All edges are simply supported. MBC: All edges remain straight. Zero average direct stresses, zero shear stresses |
||||||||
Parameters: |
||||||||
b/a | Q | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 | kσmx 2 | kσmy 2 |
1 | 20 | 0,0369 | 0,2291 | 0,2291 | 0,0315 | 0,0315 | 0,0352 | −0.0343 |
40 | 0,0293 | 0,1727 | 0,1727 | 0,0383 | 0,0383 | 0,0455 | −0,0429 | |
120 | 0,0170 | 0,0887 | 0,0887 | 0,0360 | 0,0360 | 0,0478 | −0,0423 | |
200 | 0,0126 | 0,0621 | 0,0621 | 0,0317 | 0,0317 | 0,0443 | −0,0380 | |
300 | 0,0099 | 0,0466 | 0,0466 | 0,0280 | 0,0280 | 0,0403 | −0,0337 | |
400 | 0,0082 | 0,0383 | 0,0383 | 0,0255 | 0,0255 | 0,0372 | −0,0309 | |
1,5 | 20 | 0,0554 | 0,3023 | 0,1612 | 0,0617 | 0,0287 | 0,0705 | −0,0296 |
40 | 0,0400 | 0.2114 | 0,1002 | 0,0583 | 0,0284 | 0,0710 | −0,0293 | |
120 | 0,0214 | 0,1079 | 0,0428 | 0,0418 | 0.0224 | 0,0559 | −0,0224 | |
200 | 0,0157 | 0,0778 | 0,0296 | 0,0345 | 0,0191 | 0.0471 | −0,0188 | |
300 | 0,0122 | 0,0603 | 0,0224 | 0.0296 | 0,0167 | 0,0408 | −0,0161 | |
400 | 0,0103 | 0,0505 | 0,0188 | 0,0267 | 0,0152 | 0,0369 | −0,0147 | |
2 | 20 | 0,0621 | 0,3234 | 0,1109 | 0,0627 | 0.0142 | 0,0719 | −0.0142 |
40 | 0,0438 | 0,2229 | 0,0689 | 0,0530 | 0,0120 | 0,0639 | −0,0120 | |
120 | 0,0234 | 0,1163 | 0,0336 | 0,0365 | 0,0086 | 0,0457 | −0,0083 | |
200 | 0,0172 | 0,0847 | 0,0247 | 0,0305 | 0.0075 | 0,0384 | −0,0067 | |
300 | 0,0135 | 0,0658 | 0,0195 | 0,0268 | 0,0067 | 0,0335 | −0.0058 | |
400 | 0,0113 | 0,0548 | 0,0164 | 0,0244 | 0,0064 | 0,0305 | −0,0050 | |
3 | 20 | 0,0686 | 0,3510 | 0,1022 | 0.0477 | 0,0020 | 0,0506 | −0,0007 |
40 | 0,0490 | 0,2471 | 0,0725 | 0,0420 | 0,0020 | 0,0441 | 0,0000 | |
120 | 0,0267 | 0,1317 | 0,0390 | 0,0320 | 0,0027 | 0,0335 | 0,0010 | |
200 | 0,0196 | 0,0954 | 0,0283 | 0,0271 | 0,0044 | 0,0285 | 0,0027 | |
300 | 0,0153 | 0,0733 | 0,0217 | 0,0242 | 0,0059 | 0,0256 | 0,0044 | |
400 | 0,0127 | 0,0605 | 0,0178 | 0,0221 | 0,0066 | 0,0235 | 0,0051 |
Loading: Uniformly distributed loading |
||||||||
Boundary conditions: FBC: All edges are clamped. MBC: Zero direct stresses, zero shear stresses |
||||||||
Parameters: |
||||||||
b/a | Q | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 | kσmx 2 | kσmy 2 |
1 | 20 | 0,0136 | 0,1336 | 0,1336 | 0,0061 | 0,0061 | −0,3062 | −0,0073 |
40 | 0,0131 | 0,1268 | 0,1268 | 0,0113 | 0,0113 | −0,3006 | −0,0137 | |
120 | 0,0108 | 0,0933 | 0,0933 | 0,0212 | 0,0212 | −0,2720 | −0,0286 | |
200 | 0,0092 | 0,0711 | 0,0711 | 0,0233 | 0,0233 | −0,2486 | −0,0347 | |
300 | 0,0078 | 0,0547 | 0,0547 | 0,0233 | 0,0233 | −0,2273 | −0,0383 | |
400 | 0,0069 | 0,0446 | 0,0446 | 0,0226 | 0,0226 | −0,2113 | −0,0399 | |
1,5 | 20 | 0,0234 | 0,2117 | 0,1162 | 0,0061 | 0,0133 | −0,4472 | −0,0181 |
40 | 0,0222 | 0,1964 | 0,1050 | 0,0098 | 0,0234 | −0,4299 | −0,0322 | |
120 | 0,0173 | 0,1406 | 0,0696 | 0,0124 | 0,0385 | −0,3591 | −0,0559 | |
200 | 0,0144 | 0,1103 | 0,0537 | 0,0116 | 0,0415 | −0,3160 | −0,0620 | |
300 | 0,0122 | 0,0879 | 0,0430 | 0,0105 | 0,0416 | −0,2815 | −0,0636 | |
400 | 0,0107 | 0,0737 | 0,0364 | 0,0098 | 0,0409 | −0,2583 | −0,0635 | |
2 | 20 | 0,0273 | 0,2418 | 0,0932 | 0,0010 | 0,0108 | −0,4935 | −0,0150 |
40 | 0,0265 | 0,2330 | 0,0897 | 0,0017 | 0,0198 | −0,4816 | −0,0277 | |
120 | 0,0223 | 0,1901 | 0,0740 | 0,0032 | 0,0392 | −0,4223 | −0,0551 | |
200 | 0,0192 | 0,1578 | 0,0621 | 0,0039 | 0,0456 | −0,3780 | −0,0647 | |
300 | 0,0165 | 0,1306 | 0,0518 | 0,0042 | 0,0483 | −0,3396 | −0,0690 | |
400 | 0,0147 | 0,1120 | 0,0446 | 0,0044 | 0,0487 | −0,3132 | −0,0702 | |
3 | 20 | 0,0288 | 0,2492 | 0,0767 | −0,0015 | 0,0027 | −0,5065 | −0,0033 |
40 | 0,0290 | 0,2517 | 0,0795 | −0,0022 | 0,0066 | −0,5095 | −0,0084 | |
120 | 0,0281 | 0,2440 | 0,0812 | −0,0010 | 0,0247 | −0,4984 | −0,0331 | |
200 | 0,0260 | 0,2230 | 0,0750 | 0,0000 | 0,0368 | −0,4702 | −0,0497 | |
250 | 0,0247 | 0,2096 | 0,0707 | 0,0002 | 0,0415 | −0,4520 | −0,0564 |
![]() |
Loading: Uniformly distributed loading |
||||||||
Boundary conditions: FBC: All edges are clamped. MBC: All edges remain straight. Zero average direct stresses, zero shear stresses |
|||||||||
Parameters: |
|||||||||
b/a | Q | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 | kσbx 2 | kσmx 2 | kσmy 2 |
1 | 20 | 0,0136 | 0,1333 | 0,1333 | 0,0065 | 0,0065 | −0,3058 | 0,0031 | −0,0055 |
40 | 0,0130 | 0,1258 | 0,1258 | 0,0118 | 0.0118 | −0,3000 | 0,0059 | −0,0103 | |
120 | 0,0105 | 0,0908 | 0.0908 | 0,0216 | 0,0216 | −0,2704 | 0,0123 | −0,0202 | |
200 | 0,0087 | 0.0688 | 0,0688 | 0,0234 | 0,0234 | −0,2473 | 0,0151 | −0,0233 | |
300 | 0,0073 | 0,0528 | 0,0528 | 0,0231 | 0,0231 | −0,2267 | 0,0169 | −0,0244 | |
400 | 0,0063 | 0,0430 | 0,0430 | 0,0223 | 0,0223 | −0,2119 | 0,0176 | −0,0246 | |
1,5 | 20 | 0,0230 | 0,2064 | 0.1125 | 0.0137 | 0,0097 | −0,4431 | 0,0118 | −0,0082 |
40 | 0,0210 | 0,1833 | 0,0957 | 0,0218 | 0,0155 | −0,4195 | 0,0200 | −0,0133 | |
120 | 0,0149 | 0,1175 | 0,0532 | 0,0275 | 0,0202 | −0,3441 | 0,0295 | −0,0185 | |
200 | 0,0118 | 0,0876 | 0,0369 | 0,0259 | 0,0195 | −0,3028 | 0.0304 | −0,0182 | |
300 | 0,0096 | 0.0678 | 0,0275 | 0,0238 | 0,0180 | −0,2710 | 0,0300 | −0,0173 | |
400 | 0,0083 | 0,0562 | 0,0221 | 0,0220 | 0,0168 | −0,2492 | 0,0291 | −0,0163 | |
2 | 20 | 0,0262 | 0,2288 | 0,0853 | 0,0140 | 0,0060 | −0,4811 | 0,0149 | −0,0052 |
40 | 0,0234 | 0,1994 | 0,0701 | 0,0206 | 0,0086 | −0,4492 | 0,0234 | −0,0077 | |
120 | 0,0162 | 0,1276 | 0,0404 | 0,0238 | 0,0094 | −0,3611 | 0,0299 | −0,0086 | |
200 | 0,0129 | 0,0963 | 0,0296 | 0,0223 | 0,0085 | −0,3162 | 0,0289 | −0,0079 | |
300 | 0,0105 | 0,0752 | 0,0230 | 0,0208 | 0,0077 | −0,2824 | 0,0274 | −0,0072 | |
400 | 0,0090 | 0,0627 | 0,0190 | 0,0196 | 0,0071 | −0,2600 | 0,0259 | −0,0066 | |
3 | 20 | 0,0272 | 0,2331 | 0,0700 | 0,0102 | 0,0010 | −0,4878 | 0,0111 | −0,0008 |
40 | 0,0247 | 0,2071 | 0,0615 | 0,0149 | 0,0011 | −0,4575 | 0,0167 | −0,0009 | |
120 | 0,0177 | 0,1396 | 0,0413 | 0.0186 | 0,0009 | −0.3727 | 0,0202 | −0,0005 | |
200 | 0,0143 | 0,1074 | 0,0319 | 0,0184 | 0,0009 | −0,3272 | 0,0197 | −0,0003 | |
300 | 0,0117 | 0,0848 | 0,0251 | 0,0176 | 0,0008 | −0,2924 | 0,0192 | −0,0002 | |
400 | 0,0101 | 0,0709 | 0,0210 | 0,0169 | 0,0008 | −0,2687 | 0.0182 | 0,0000 |
σx,Ed = − σbx,Ed + σmx,Ed (C.16)
σy,Ed = − σby,Ed + σmy,Ed (C.17)
σx,Ed = σbx,Ed + σmx,Ed (C.18)
σy,Ed = σby,Ed + σmy,Ed (C.19)
NOTE: The points for which the state of stress are defined in the data tables are located either on the centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, membrane shearing stresses τm as well as bending shear stresses τb are zero. The algebraic sum of the appropriate bending and membrane stresses at the points considered in the data tables gives the values of maximum and minimum surface stresses at these points.
Loading: Central patch loading |
||||||
Boundary conditions: FBC: All edges are rigidly supported and rotationally free. MBC:Zero direct stresses, zero shear stresses |
||||||
Parameters: α = u/a; β = v/a b/a = 1 |
||||||
α × β | ρ | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 |
0,1 × 0,l | 10 | 0,1021 | 1,4586 | 1,4586 | 0,1548 | 0,1548 |
20 | 0,0808 | 1,2143 | 1,2143 | 0,1926 | 0,1926 | |
60 | 0,0485 | 0,8273 | 0,8273 | 0,2047 | 0,2047 | |
100 | 0,0372 | 0,6742 | 0,6742 | 0,1978 | 0,1978 | |
150 | 0,0298 | 0,5693 | 0,5693 | 0,1892 | 0,1892 | |
200 | 0,0255 | 0,5005 | 0,5005 | 0,1823 | 0,1823 | |
0,2 × 0,2 | 10 | 0,0998 | 1,0850 | 1,0850 | 0,1399 | 0,1399 |
20 | 0,0795 | 0,8593 | 0,8593 | 0,1729 | 0.1729 | |
60 | 0,0478 | 0,5108 | 0,5108 | 0,1756 | 0,1756 | |
100 | 0,0364 | 0,3881 | 0,3881 | 0,1624 | 0,1624 | |
150 | 0,0293 | 0,3089 | 0,3089 | 0,1505 | 0,1505 | |
200 | 0,0249 | 0,2614 | 0,2614 | 0,1412 | 0,1412 | |
0,3 × 0,3 | 10 | 0,0945 | 0,8507 | 0,8507 | 0,1144 | 0,1144 |
20 | 0,0759 | 0,6614 | 0,6614 | 0,1425 | 0,1425 | |
60 | 0,0459 | 0,3702 | 0,3702 | 0,1425 | 0,1425 | |
100 | 0,0351 | 0,2704 | 0,2704 | 0,1300 | 0,1300 | |
150 | 0,0282 | 0,2101 | 0,2101 | 0,1186 | 0,1186 | |
200 | 0,0240 | 0,1747 | 0,1747 | 0,1102 | 0,1102 | |
0,2 × 0,3 | 10 | 0,0971 | 0,9888 | 0,9128 | 0,1224 | 0,1288 |
20 | 0,0776 | 0,7800 | 0,7101 | 0,1512 | 0,1602 | |
60 | 0,0468 | 0,4596 | 0,4021 | 0,1488 | 0,1624 | |
100 | 0,0358 | 0,3468 | 0,2957 | 0,1368 | 0,1512 | |
150 | 0,0287 | 0,2760 | 0,2307 | 0,1248 | 0,1389 | |
200 | 0,0245 | 0,2340 | 0,1926 | 0,1152 | 0,1310 | |
0,2 × 0,4 | 10 | 0,0939 | 0,9119 | 0,7961 | 0,1078 | 0,1183 |
20 | 0,0755 | 0,7216 | 0,6142 | 0,1320 | 0,1487 | |
60 | 0,0457 | 0,4235 | 0,3355 | 0,1287 | 0,1516 | |
100 | 0,0350 | 0,3201 | 0,2435 | 0,1166 | 0,1408 | |
150 | 0,0280 | 0,2541 | 0.1868 | 0,1045 | 0,1301 | |
200 | 0,0239 | 0,2156 | 0,1545 | 0,0968 | 0,1213 |
Loading: Central patch loading |
||||||
Boundary conditions: FBC: All edges are rigidly supported and rotationally free. MBC: Zero direct stresses, zero shear stresses |
||||||
Parameters: α = u/a; β = v/a b/a = 1,5 |
||||||
α × β | ρ | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 |
0,1 × 0,1 | 10 | 0,1303 | 1,5782 | 1.3855 | 0,1517 | 0,1921 |
20 | 0,1018 | 1,3056 | 1,1373 | 0,1786 | 0,2295 | |
60 | 0,0612 | 0,8986 | 0,7701 | 0,1824 | 0,2380 | |
100 | 0,0469 | 0,7411 | 0,6273 | 0,1747 | 0,2295 | |
150 | 0,0378 | 0,6298 | 0,5287 | 0,1670 | 0,2193 | |
200 | 0,0323 | 0,5568 | 0,4641 | 0,1594 | 0,2125 | |
0,2 × 0,2 | 10 | 0,1281 | 1,1974 | 1,0049 | 0,1344 | 0,1780 |
20 | 0,1007 | 0,9453 | 0,7766 | 0,1555 | 0,2116 | |
60 | 0,0605 | 0,5783 | 0,4554 | 0,1465 | 0,2103 | |
100 | 0,0462 | 0,4485 | 0,3457 | 0,1329 | 0,1974 | |
150 | 0,0372 | 0,3624 | 0,2748 | 0,1208 | 0,1845 | |
200 | 0,0317 | 0,3111 | 0,2322 | 0,1133 | 0,1742 | |
0,3 × 0,3 | 10 | 0,1229 | 0,9589 | 0,7737 | 0,1074 | 0,1525 |
20 | 0,0972 | 0,7405 | 0,5828 | 0,1232 | 0,1818 | |
60 | 0,0585 | 0,4282 | 0,3161 | 0,1110 | 0,1788 | |
100 | 0,0449 | 0,3221 | 0,2353 | 0,0988 | 0,1667 | |
150 | 0,0361 | 0,2550 | 0,1828 | 0,0878 | 0,1535 | |
200 | 0,0309 | 0,2147 | 0.1525 | 0,0805 | 0,1444 | |
0,2 × 0,3 | 10 | 0,1260 | 1,1037 | 0,8360 | 0,1154 | 0,1657 |
20 | 0,0994 | 0,8688 | 0,6322 | 0,1321 | 0,1984 | |
60 | 0,0598 | 0,5296 | 0,3553 | 0,1168 | 0,1973 | |
100 | 0,0459 | 0.4114 | 0,2649 | 0,1043 | 0,1853 | |
150 | 0,0369 | 0,3336 | 0,2082 | 0,0931 | 0,1722 | |
200 | 0,0314 | 0,2877 | 0,1755 | 0,0848 | 0,1624 | |
0,2 × 0,4 | 10 | 0,1235 | 1,0294 | 0,7271 | 0,0993 | 0,1563 |
20 | 0,0977 | 0,8101 | 0,5432 | 0,1109 | 0,1877 | |
60 | 0,0590 | 0,4954 | 0,2983 | 0,0955 | 0,1877 | |
100 | 0,0453 | 0,3857 | 0,2220 | 0,0826 | 0,1754 | |
150 | 0,0365 | 0,3148 | 0,1744 | 0,0722 | 0,1630 | |
200 | 0.0311 | 0,2722 | 0,1468 | 0,0658 | 0,1544 |
Loading: Central patch loading |
|||||||
Boundary conditions: FBC: All edges are rigidly supported and rotationally free. MBC: Zero direct stresses, zero shear stresses |
|||||||
Parameters: α = u/a; β = v/a b/a = 2 |
|||||||
α × β | ρ | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 | |
0,1 × 0,l | 10 | 0,1438 | 1,6351 | 1,3560 | 0,1517 | 0,1904 | |
20 | 0,1154 | 1,3692 | 1,1106 | 0,1773 | 0,2288 | ||
60 | 0,0725 | 0,9633 | 0,7498 | 0,1753 | 0,2438 | ||
100 | 0,0564 | 0,7979 | 0,6112 | 0,1675 | 0,2355 | ||
150 | 0,0456 | 0,6797 | 0,5127 | 0,1596 | 0,2271 | ||
200 | 0,0390 | 0,6028 | 0,4492 | 0,1517 | 0,2188 | ||
0,2 × 0,2 | 10 | 0,1414 | 1,2542 | 0,9752 | 0,1326 | 0,1751 | |
20 | 0,1138 | 1,0078 | 0,7510 | 0,1513 | 0,2104 | ||
60 | 0,0716 | 0,6427 | 0.4410 | 0,1373 | 0,2167 | ||
100 | 0,0555 | 0,5054 | 0,3339 | 0,1232 | 0,2054 | ||
150 | 0,0449 | 0,4134 | 0.2646 | 0,1108 | 0,1928 | ||
200 | 0,0384 | 0,3572 | 0,2230 | 0,1030 | 0,1827 | ||
0,3 × 0,3 | 10 | 0,1362 | 1,0227 | 0,7506 | 0,1062 | 0,1517 | |
20 | 0,1104 | 0,8090 | 0,5615 | 0,1190 | 0,1822 | ||
60 | 0,0698 | 0,4941 | 0,3093 | 0,1024 | 0,1862 | ||
100 | 0,0542 | 0,3789 | 0,2275 | 0,0883 | 0,1753 | ||
150 | 0,0421 | 0,3046 | 0,1783 | 0,0794 | 0,1645 | ||
200 | 0,0374 | 0.2586 | 0,1487 | 0,0717 | 0,1546 | ||
0,2 × 0,3 | 10 | 0,1395 | 1,1702 | 0.8164 | 0,1146 | 0,1231 | |
20 | 0,1129 | 0,9396 | 0,6153 | 0,1262 | 0,1990 | ||
60 | 0,0712 | 0.6003 | 0,3488 | 0,1088 | 0,2044 | ||
100 | 0,0553 | 0,4742 | 0,2611 | 0,0943 | 0,1947 | ||
150 | 0,0447 | 0,3901 | 0,2065 | 0,0841 | 0,1830 | ||
200 | 0,0383 | 0,3379 | 0,1744 | 0,0754 | 0,1733 | ||
0,2 × 0,4 | 10 | 0,1375 | 1,0976 | 0,7051 | 0,0959 | 0,1551 | |
20 | 0,1117 | 0,8829 | 0,5267 | 0,1053 | 0,1886 | ||
60 | 0,0706 | 0,5670 | 0,2945 | 0,0851 | 0,1942 | ||
100 | 0,0549 | 0,4496 | 0,2220 | 0,0729 | 0,1849 | ||
150 | 0,0445 | 0,3713 | 0,1765 | 0,0635 | 0,1737 | ||
200 | 0,0381 | 0,3227 | 0,1496 | 0,0554 | 0,1644 |
Loading: Central patch loading |
||||||
Boundary conditions: FBC: All edges are rigidly supported and rotationally free. MBC: Zero direct stresses, zero shear stresses |
||||||
Parameters: α = u/a; β = v/a b/a = 2.5 |
||||||
α × β | ρ | kw 1 | kσbx 1 | kσby 1 | kσmx 1 | kσmy 1 |
0,1 × 0,l | 10 | 0,1496 | 1,6636 | 1,3463 | 0,1552 | 0,1826 |
20 | 0,1235 | 1,4109 | 1,1006 | 0,1811 | 0,2175 | |
60 | 0,0861 | 1,0428 | 0,7453 | 0,1811 | 0,2374 | |
0,2 × 0,2 | 10 | 0,1470 | 1,2814 | 0,9650 | 0,1359 | 0,1688 |
20 | 0,1218 | 1,0491 | 0,7400 | 0,1548 | 0,2000 | |
60 | 0,0849 | 0,7205 | 0,4363 | 0,1390 | 0,2088 | |
0,3 × 0,3 | 10 | 0,1419 | 1,0504 | 0,7410 | 0,1092 | 0,1443 |
20 | 0,1182 | 0,8489 | 0,5519 | 0.1222 | 0,1726 | |
60 | 0,0827 | 0,5681 | 0,3052 | 0,1014 | 0,1775 | |
0,2 × 0,3 | 10 | 0,1455 | 1,1981 | 0,8056 | 0,1161 | 0,1579 |
20 | 0,1210 | 0,9820 | 0,6053 | 0,1294 | 0,1876 | |
60 | 0,0847 | 0,6806 | 0,3487 | 0,1088 | 0,1982 | |
0,2 × 0,4 | 10 | 0,1434 | 0,1126 | 0,6949 | 0,0986 | 0,1469 |
20 | 0,1199 | 0,9261 | 0,5168 | 0,1069 | 0,1763 | |
60 | 0,0844 | 0,6480 | 0,2993 | 0,0849 | 0,1873 |